用户名: 密码: 验证码:
Ratiometric Time-Gated Luminescence Probe for Hydrogen Sulfide Based on Lanthanide Complexes
详细信息    查看全文
文摘
Developments of ratiometric bioprobes are highly appealing due to the superiority of their self-calibration capability for the quantitative biotracking. In this work, we designed and synthesized a novel lanthanide complex-based ratiometric luminescence probe, [4鈥?(2,4-dinitrophenyloxy)-2,2鈥?6鈥?2鈥?terpyridine-6,6鈥?diyl]bis(methylenenitrilo) tetrakis(acetate)-Eu3+/Tb3+ (NPTTA-Eu3+/Tb3+), for the specific recognition and quantitative time-gated luminescence detection of hydrogen sulfide (H2S) in aqueous and living cell samples. Due to the presence of the photoinduced electron transfer (PET) process from the terpyridine-Eu3+/Tb3+ moiety to 2,4-dinitrophenyl (DNP), the probe itself is weakly luminescent. In physiological pH aqueous media, the reaction of NPTTA-Eu3+/Tb3+ with H2S leads to the cleavage of DNP moiety from the probe molecule, which affords the deprotonated (4鈥?hydroxy-2,2鈥?6鈥?2鈥?terpyridine-6,6鈥?diyl)bis(methylenenitrilo) tetrakis(acetate)-Eu3+/Tb3+ and terminates the PET process. Meanwhile, the intensity of Tb3+ emission at 540 nm is remarkably increased, while that of the Eu3+ emission at 610 nm is slightly decreased. After the reaction, the intensity ratio of Tb3+ emission to Eu3+ emission, I540/I610, was 鈭?20-fold increased, and the dose-dependent enhancement of I540/I610 showed a good linearity upon the increase of H2S concentration with a detection limit of 3.5 nM. This unique luminescence response allowed NPTTA-Eu3+/Tb3+ to be conveniently used as a ratiometric probe for the time-gated luminescence detection of H2S with I540/I610 as a signal. In addition, the applicability of the probe for the quantitative time-gated luminescence imaging of intracellular H2S in living cells was investigated. The results demonstrated the efficacy and advantage of the new probe for the time-gated luminescence cell imaging application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700