用户名: 密码: 验证码:
Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO
详细信息    查看全文
文摘
The rapid development of organometal halide perovskite solar cells has led to reports of power conversion efficiencies of over 20%. Despite this excellent performance, their instability remains the major challenge limiting their commercialization. In this report, we systematically investigate the origin of the thermal instability of perovskite solar cells fabricated using ZnO electron transport layers. Through in situ grazing incidence X-ray diffraction experiments and density functional theory calculations, we show that the basic nature of the ZnO surface leads to proton-transfer reactions at the ZnO/CH3NH3PbI3 interface, which results in decomposition of the perovskite film. The decomposition process is accelerated by the presence of surface hydroxyl groups and/or residual acetate ligands; calcination of the ZnO layer results in a more thermally stable ZnO/CH3NH3PbI3 interface, albeit at the cost of a small decrease in power conversion efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700