用户名: 密码: 验证码:
Diverging Geometric and Magnetic Size Distributions of Iron Oxide Nanocrystals
详细信息    查看全文
文摘
An important reason to prepare magnetic nanoparticles of uniform size and shape is to ensure uniform magnetic properties. However, here, we demonstrate that magnetic iron oxide crystals of 20 nm or less with a low polydispersity of the geometric size can nevertheless have a strikingly broad distribution of the magnetic dipole moment. A comparative study was performed on nanoparticles with near-perfect crystallinity, twinning defects, or a high density of dislocations. Size, shape, and crystal defects were characterized with electron microscopy and X-ray diffraction, and magnetic dipole moments were determined from magnetization curves of dilute colloidal dispersions. The largest divergence was found for spherical particles with 3.5% geometric size polydispersity and 35% magnetic size polydispersity due to crystal lattice defects that disrupt single-domain magnetic spin coupling. This is in stark contrast with the usual implicit assumption that uniform size and shape guarantee well-defined magnetic properties of the individual particles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700