用户名: 密码: 验证码:
Nanometer Smooth, Macroscopic Spherical Cellulose Probes for Contact Adhesion Measurements
详细信息    查看全文
文摘
Cellulose spheres were prepared by dissolving cellulose fibers and subsequently solidifying the solution in a nonsolvent. Three different solution concentrations were tested and several nonsolvents were evaluated for their effect on the formation of spheres. Conditions were highlighted to create cellulose spheres with a diameter of 鈭? mm and a root-mean-square surface roughness of 鈭? nm. These solid spheres were shown to be easily chemically modified without changing the mechanical properties significantly. Contact adhesion measurements were then implemented with these spheres against a poly(dimethylsiloxane) (PDMS) elastomer in order to quantify the adhesion. Using Johnson鈥揔endall鈥揜oberts (JKR) theory, we quantified the adhesion for unmodified cellulose and hydrophobic cellulose spheres. We highlight the ability of these spheres to report more accurate adhesion information, compared to spin-coated thin films. The application of these new cellulose probes also opens up new possibilities for direct, accurate measurement of adhesion between cellulose and other materials instead of using uncertain surface energy determinations to calculate the theoretical work of adhesion between cellulose and different solid materials.

Keywords:

cellulose; adhesion; surface roughness; contact adhesion; spheres; chemical modification

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700