用户名: 密码: 验证码:
Graft Architectured Rod鈥揅oil Copolymers Based on Alternating Conjugated Backbone: Morphological and Optical Properties
详细信息    查看全文
文摘
Controlling the self-assembly of conjugated copolymers is of great importance in tuning their physical and optoelectronic properties, offering potential pathways to greatly enhance the performance of organic electronics. Here, we report the synthesis of rod鈥揷oil graft copolymers containing an electroactive conjugated rod-like backbone and polymer coils as grafts and demonstrate the control of their ordered nanostructures. As a model system, we synthesized light-emitting poly(fluorene-alt-phenylene) (PFP) alternating copolymers and then grafted poly(2-vinylpyridine) (P2VP) chains with different lengths via a 鈥渃lick鈥?reaction to produce a series of PFP-g-P2VP graft copolymers with various P2VP volume fractions (fP2VP). Interestingly, PFP-g-P2VP rod鈥揷oil copolymers assembled into well-ordered cylinders and lamellae depending on fP2VP values that resembled those of the coil鈥揷oil type block copolymers, but with very different fP2VP values for the morphological transitions (i.e., cylinders to lamellae). The morphological behavior of these graft copolymers was investigated using self-consistent-field theory simulations. Furthermore, by fully exploiting the controlled nanostructures of PFP-g-P2VP and the strong emitting properties of the PFP backbone, we developed multicolor colloidal particles that emit a broad range color spectrum from blue, white, and orange light. Our synthetic approach paves a new method for modulating the self-assembled nanostructures of rod鈥揷oil copolymers and their optoelectronic properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700