用户名: 密码: 验证码:
A Colorimetric Plasmonic Nanosensor for Dosimetry of Therapeutic Levels of Ionizing Radiation
详细信息    查看全文
文摘
Modern radiation therapy using highly automated linear accelerators is a complex process that maximizes doses to tumors and minimizes incident dose to normal tissues. Dosimeters can help determine the radiation dose delivered to target diseased tissue while minimizing damage to surrounding healthy tissue. However, existing dosimeters can be complex to fabricate, expensive, and cumbersome to operate. Here, we demonstrate studies of a liquid phase, visually evaluated plasmonic nanosensor that detects radiation doses commonly employed in fractionated radiotherapy (1鈥?0 Gy) for tumor ablation. We accomplished this by employing ionizing radiation, in concert with templating lipid surfactant micelles, in order to convert colorless salt solutions of univalent gold ions (Au1) to maroon-colored dispersions of plasmonic gold nanoparticles. Differences in color intensities of nanoparticle dispersions were employed as quantitative indicators of the radiation dose. The nanoparticles thus formed were characterized using UV鈥搗is absorbance spectroscopy, dynamic light scattering, and transmission electron microscopy. The role of lipid surfactants on nanoparticle formation was investigated by varying the chain lengths while maintaining the same headgroup and counterion; the effect of surfactant concentration on detection efficacy was also investigated. The plasmonic nanosensor was able to detect doses as low as 0.5 Gy and demonstrated a linear detection range of 0.5鈥? Gy or 5鈥?7 Gy depending on the concentration of the lipid surfactant employed. The plasmonic nanosensor was also able to detect radiation levels in anthropomorphic prostate phantoms when administered together with endorectal balloons, indicating its potential utility as a dosimeter in fractionated radiotherapy for prostate cancer. Taken together, our results indicate that this simple visible nanosensor has strong potential to be used as a dosimeter for validating delivered radiation doses in fractionated radiotherapies in a variety of clinical settings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700