用户名: 密码: 验证码:
Hybrid Functionals Study of Band Bowing, Band Edges and Electronic Structures of Cd1鈥?i>xZnxS Solid Solution
详细信息    查看全文
文摘
We have systematically studied band bowing, band edges, and electronic properties of both zinc-blende and wurtzite Cd1鈥?i>xZnxS solid solutions by using a special quasirandom structures approach combined with hybrid DFT calculations. Hybrid DFT gives a more accurate description of the lattice constants, formation enthalpies, and electronic structures of the parent semiconductors than standard DFT. Alloying CdS with ZnS causes a downward band bowing that is dominated by volume deformation. The conduction- and valence- band edges straddle the redox potentials of (O2/H2O) and (H+/H2) over the whole Zn concentration range. The high photocatalytic activity of Cd1鈥?i>xZnxS is due to the elevation of the conduction band minimum (CBM). The optimal Zn content is around 0.5, determined as a result of balancing the elevation of the CBM and the widening of the band gap. The valence bandwidth increases with Zn content and thus raises the mobility of photogenerated holes, which may be related to photocorrosion and lead to the leaching of Zn in Cd1鈥?i>xZnxS photocatalyst during water splitting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700