用户名: 密码: 验证码:
Suitable Morphology Makes CoSn(OH)6 Nanostructure a Superior Electrochemical Pseudocapacitor
详细信息    查看全文
文摘
Morphology of a material with different facet, edge, kink, etc., generally influences the rate of a catalytic reaction.1,2 Herein, we account for the importance of altered morphology of a nanomaterial for a supercapacitor device and employed CoSn(OH)6 as an electrode material. Suitable fabrication of a stable aqueous asymmetric supercapacitor (AAS) using metal hydroxide as positive electrode can be beneficial if the high energy density is derived without sacrificing the power density. Here we have synthesized an uncommon hierarchical mesoporous nanostructured (HNS) CoSn(OH)6 to fabricate a pseudocapacitor. In this endeavor, NH3 is found to be a well-suited hydrolyzing agent for the synthesis.3 Serendipitously, HNS was transformed into favored cubic nanostructure (CNS) in NaOH solution. In solution, NaOH acts as a structure directing as well as an etching agent. Both the samples (HNS & CNS) were used as pseudocapacitor electrodes in KOH electrolyte independently, which is reported for the first time. The HNS exhibits very high specific capacitance value (2545 F/g at 2.5 A/g specific current) with better cyclic durability over CNS sample (851 F/g at 2.5 A/g specific current). To examine the real cell application, we used HNS sample as the positive electrode material with the activated carbon (AC) as the negative electrode material for the development of an aqueous asymmetric supercapacitor (AAS). The as-fabricated AAS exhibited very high specific capacitance value of 713 F/g at a specific current of 1.5 A/g and retained 92% specific capacitance value even after 10 000 charge–discharge cycles. A maximum energy density of 63.5 Wh kg–1 and a maximum power density of 5277 W kg–1 were ascertained from the as-fabricated AAS, HNS CoSn(OH)6//AC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700