用户名: 密码: 验证码:
Plasmon-Enhanced Photocatalytic CO2 Conversion within Metal–Organic Frameworks under Visible Light
详细信息    查看全文
文摘
Materials development for artificial photosynthesis, in particular, CO2 reduction, has been under extensive efforts, ranging from inorganic semiconductors to molecular complexes. In this report, we demonstrate a metal–organic framework (MOF)-coated nanoparticle photocatalyst with enhanced CO2 reduction activity and stability, which stems from having two different functional units for activity enhancement and catalytic stability combined together as a single construct. Covalently attaching a CO2-to-CO conversion photocatalyst ReI(CO)3(BPYDC)Cl, BPYDC = 2,2′-bipyridine-5,5′-dicarboxylate, to a zirconium MOF, UiO-67 (Ren-MOF), prevents dimerization leading to deactivation. By systematically controlling its density in the framework (n = 0, 1, 2, 3, 5, 11, 16, and 24 complexes per unit cell), the highest photocatalytic activity was found for Re3-MOF. Structural analysis of Ren-MOFs suggests that a fine balance of proximity between photoactive centers is needed for cooperatively enhanced photocatalytic activity, where an optimum number of Re complexes per unit cell should reach the highest activity. Based on the structure–activity correlation of Ren-MOFs, Re3-MOF was coated onto Ag nanocubes (Ag⊂Re3-MOF), which spatially confined photoactive Re centers to the intensified near-surface electric fields at the surface of Ag nanocubes, resulting in a 7-fold enhancement of CO2-to-CO conversion under visible light with long-term stability maintained up to 48 h.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700