用户名: 密码: 验证码:
Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation
详细信息    查看全文
文摘
To reduce Schottky-barrier-induced contact and access resistance, and the impact of charged impurity and phonon scattering on mobility in devices based on 2D transition metal dichalcogenides (TMDs), considerable effort has been put into exploring various doping techniques and dielectric engineering using high-魏 oxides, respectively. The goal of this work is to demonstrate a high-魏 dielectric that serves as an effective n-type charge transfer dopant on monolayer (ML) molybdenum disulfide (MoS2). Utilizing amorphous titanium suboxide (ATO) as the 鈥渉igh-魏 dopant鈥? we achieved a contact resistance of 鈭?80 惟路渭m that is the lowest reported value for ML MoS2. An ON current as high as 240 渭A/渭m and field effect mobility as high as 83 cm2/V-s were realized using this doping technique. Moreover, intrinsic mobility as high as 102 cm2/V-s at 300 K and 501 cm2/V-s at 77 K were achieved after ATO encapsulation that are among the highest mobility values reported on ML MoS2. We also analyzed the doping effect of ATO films on ML MoS2, a phenomenon that is absent when stoichiometric TiO2 is used, using ab initio density functional theory (DFT) calculations that shows excellent agreement with our experimental findings. On the basis of the interfacial-oxygen-vacancy mediated doping as seen in the case of high-魏 ATO鈥揗L MoS2, we propose a mechanism for the mobility enhancement effect observed in TMD-based devices after encapsulation in a high-魏 dielectric environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700