用户名: 密码: 验证码:
Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the 鈥淎bnormal鈥?Aggregation-Induced Photoluminescence Enhancement
详细信息    查看全文
文摘
A hydrothermal approach for the cutting of boron-doped graphene (BG) into boron-doped graphene quantum dots (BGQDs) has been proposed. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 3.45%. The generation of boronic acid groups on the BGQDs surfaces facilitates their application as a new photoluminescence (PL) probe for label free glucose sensing. It is postulated that the reaction of the two cis-diol units in glucose with the two boronic acid groups on the BGQDs surfaces creates structurally rigid BGQDs鈥揼lucose aggregates, restricting the intramolecular rotations and thus resulting in a great boost in the PL intensity. The present unusual 鈥渁ggregation-induced PL increasing鈥?sensing process excludes any saccharide with only one cis-diol unit, as manifested by the high specificity of BGQDs for glucose over its close isomeric cousins fructose, galactose, and mannose. It is believed that the doping of boron can introduce the GQDs to a new kind of surface state and offer great scientific insights to the PL enhancement mechanism with treatment of glucose.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700