用户名: 密码: 验证码:
Pulse Electrochemical Driven Rapid Layer-by-Layer Assembly of Polydopamine and Hydroxyapatite Nanofilms via Alternative Redox in Situ Synthesis for Bone Regeneration
详细信息    查看全文
文摘
Polydopamine (PDA) is an important candidate material for the surface modification of biomedical devices because of its good adhesiveness and biocompatibility. However, PDA nanofilms lack osteoinductivity, limiting their applications in bone tissue engineering. Hydroxyapatite nanoparticles (HA-NPs) are the major component of natural bone, which can be used to effectively enhance the osteoinductivity of PDA nanofilms. Herein, we developed a pulse electrochemical driven layer-by-layer (PED-LbL) assembly process to rapidly deposit HA-NPs and PDA (HA-PDA) multilayer nanofilms. In this process, PDA and HA-NPs are in situ synthesized in two sequential oxidative and reductive pulses in each electrochemical deposition cycle and alternately deposited on the substrate surfaces. PDA assists the in situ synthesis of HA-NPs by working as a template, which avoids the noncontrollable HA nucleation and aggregation. The HA-PDA multilayer nanofilms serve as a tunable reservoir to deliver bone morphogenetic protein-2 and exhibit high osteoinductivity both in vitro and in vivo. This PED-LbL assembly process breaks the limitation of traditional LbL assembly, allowing not only the rapid assembly of oppositely charged polyelectrolytes but also the in situ synthesis of organic/inorganic NPs that are uniformly incorporated in the nanofilm. It has broad applications in the preparation of versatile surface coatings on various biomedical devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700