用户名: 密码: 验证码:
Quantum Dot Photoactivation of Pt(IV) Anticancer Agents: Evidence of an Electron Transfer Mechanism Driven by Electronic Coupling
详细信息    查看全文
文摘
Herein we elucidate the mechanism of photoreduction of the Pt(IV) complex cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] (1) into Pt(II) species (among which is cisplatin) by quantum dots (QDs), a process which holds potential for photodynamic therapy. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) methodologies, integrated by selected experiments, were employed to study the interaction and the light-induced electron transfer (ET) process occurring between two QD models and 1. Direct adsorption of the complex on the nanomaterial surface results in large electronic coupling between the LUMO (lowest unoccupied molecular orbital) of the excited QD* and the LUMO+1 of 1, providing the driving force to the light-induced release of the succinate ligands from the Pt derivative. As confirmed by photolysis experiments performed a posteriori, DFT highlights that QD photoactivation of 1 can favor the formation of preferred Pt(II) photoproducts, paving the way for the design of novel hybrid Pt(IV)鈥搒emiconductor systems where photochemical processes can be finely tuned.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700