用户名: 密码: 验证码:
Insights into the Kinetics of Cracking and Dehydrogenation Reactions of Light Alkanes in H-MFI
详细信息    查看全文
文摘
Monomolecular reactions of alkanes in H-MFI were investigated by means of a dispersion-corrected density functional, 蠅B97X-D, combined with a hybrid quantum mechanics/molecular mechanics (QM/MM) method applied to a cluster model of the zeolite. The cluster contains 437 tetrahedral (T) atoms, within which a T5 region containing the acid site along with the representative alkane is treated quantum mechanically. The influence of active site location on reaction energetics was examined by studying cracking and dehydrogenation reactions of n-butane at two regions in H-MFI鈥揟12, where the proton is at the intersection of straight and sinusoidal channels, and T10, where the proton is within the sinusoidal channel. Two transition states were observed for cracking: one where the proton attacks the C鈥揅 bond and another where it attacks a C atom. Dehydrogenation proceeds via a concerted mechanism, where the transition state indicates simultaneous H2 formation and proton migration to the framework. Intrinsic activation energies can be determined accurately with this method, although heats of adsorption were found to be higher in magnitude relative to experiments, which is most likely mainly caused by the MM dispersion parameters for the zeolite framework atoms. Intrinsic activation energies calculated for reactions at the T10 site are higher than those at T12 owing to differences in interaction of the substrate with the acid site as well as with the zeolite framework, demonstrating that Br酶nsted acid sites in H-MFI are not equivalent for these reactions. Apparent activation energies, determined from calculated intrinsic activation energies and experimentally measured heats of adsorption taken from the literature, are in excellent agreement with experimental results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700