用户名: 密码: 验证码:
Improved Cyclic Performance of Lithium-Ion Batteries: An Investigation of Cathode/Electrolyte Interface via In Situ Total-Reflection Fluorescence X-ray Absorption Spectroscopy
详细信息    查看全文
文摘
For the further development of lithium-ion batteries, improvement of their cyclic performance is crucial. However, the mechanism underlying the deterioration of the battery cyclic performance is not fully understood. We investigated the effects of the electronic structure at the electrode/electrolyte interface on the cyclic performance of the cathode materials via in situ total-reflection fluorescence X-ray absorption spectroscopy. In a LiCoO2 thin-film electrode that exhibits gradual deterioration upon subsequent Li ion extractions and insertions (cycling), the reduction of Co ions at the electrode/electrolyte interface was observed upon immersion in an organic electrolyte, with subsequent irreversible changes after cycling. In contrast, in a LiFePO4 thin-film electrode, the electronic structure at the electrode/electrolyte interface was stable and reversible upon electrolyte immersion with subsequent cycling. The increased stability of the electronic structure at the LiFePO4/electrolyte interface affects its cycling performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700