用户名: 密码: 验证码:
Effect of Micellization on the Thermoresponsive Behavior of Polymeric Assemblies
详细信息    查看全文
文摘
The chain density of polymer micelles, dictated by their aggregation number (Nagg), is an often overlooked parameter that governs the macroscopic behavior of responsive assemblies. Using a combination of variable-temperature light scattering, turbidimetry, and microcalorimetry experiments, the cloud point and thermal collapse of micellar poly(N-isopropylacrylamide) (pNIPAM) corona chains at lower temperatures than the cloud point were found to be largely independent of the micelle鈥檚 Nagg. By controlling the core composition, the degree of hysteresis associated with the thermal transition was found to increase as a function of core hydrophobicity. We performed this study on well-characterized micelles with tunable Nagg values, composed of a thermoresponsive corona (pNIPAM) and a nonresponsive core block poly(n-butyl acrylate-co-N,N-dimethylacrylamide) (p(nBA-co-DMA)), which were synthesized using reversible addition鈥揻ragmentation chain transfer (RAFT) polymerization. This allowed for a distinction to be made between thermoresponsive behavior at both the molecular and macroscopic level. The study of the subtle differences between these behaviors was made possible using a combination of complementary techniques. These results highlight the critical need for consideration of the effect that self-assembly plays on the responsive behavior of polymer chains when compared with free unimers in solution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700