用户名: 密码: 验证码:
Post-Synthesis Conversion of Borosilicate Zeolite Beta to an Aluminosilicate with Isolated Acid Sites: A Quantitative Distance Analysis by Solid-State NMR
详细信息    查看全文
文摘
Isolated acid sites were selectively generated by postsynthesis modification of a borosilicate zeolite beta. To this end, samples were prepared with pairs of adjacent boron sites balanced by Ca2+ ions, whereas isolated boron in the zeolite framework was balanced by NH4+ ions. To avoid undesired boron leaching, these ion exchange reactions were carried out in methanol solution rather than in water. Trigonal boron forms near the NH4+ ions by decomposing the latter into NH3 (and a proton), and selective extraction of the trigonal boron is achieved by water treatment, whereas the tetrahedral boron near Ca2+ ions remains in the zeolite framework. The vacancies were refilled with aluminum by treatment with an aqueous Al(NO3)3 solution. Two Brønsted acid sites with 1H chemical shifts of 4.0 and 5.0 ppm exist in the dehydrated samples. 1H–27Al REAPDOR solid-state NMR measurements yield quantitative information on the local H–Al distances of isolated H–Al two-spin and H–Al–Al three-spin systems. The nearest H–Al distance is determined at 2.50 Å with an accuracy of 2% (or better) by fitting the oscillatory part of the REAPDOR curves, which was not observed before for zeolite acid sites. The second nearrest Al neighbors show a much larger distance of about 5 Å for the acid protons with a chemical shift of δ = 4 ppm. A second acid site at δ = 5 ppm has an approximately 50% occupation of a second Al neighbor at 3.73 Å, possibly within the same six-ring. This high resolution of dipolar interaction is not observed in a standard zeolite Al-beta prepared by direct synthesis. The method is suitable to identify well-defined local ordering in Al distributions of zeolites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700