用户名: 密码: 验证码:
Generation of Monolayer Gradients in Surface Energy and Surface Chemistry for Block Copolymer Thin Film Studies
详细信息    查看全文
文摘
We utilize a vapor deposition setup and cross-diffusion of functionalized chlorosilanes under dynamic vacuum to generate a nearly linear gradient in surface energy and composition on a silicon substrate. The gradient can be tuned by manipulating chlorosilane reservoir sizes and positions, and the gradient profile is independent of time as long as maximum coverage of the substrate is achieved. Our method is readily amenable to the creation of gradients on other substrate surfaces, due to the use of vapor deposition, and with other functionalities, due to our use of functionalized chlorosilanes. Our gradients were characterized using contact angle measurements and X-ray photoelectron spectroscopy. From these measurements, we were able to correlate composition, contact angle, and surface energy. We generated a nearly linear gradient with a range in mole fraction of one component from 0.15 to 0.85 (34 to 40 mJ/m2 in surface energy) to demonstrate its utility in a block copolymer thin film morphology study. Examination of the copolymer thin film surface morphology with optical and atomic force microscopy revealed the expected morphological transitions across the gradient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700