用户名: 密码: 验证码:
Active and Selective Conversion of CO2 to CO on Ultrathin Au Nanowires
详细信息    查看全文
文摘
In this communication, we show that ultrathin Au nanowires (NWs) with dominant edge sites on their surface are active and selective for electrochemical reduction of CO2 to CO. We first develop a facile seed-mediated growth method to synthesize these ultrathin (2 nm wide) Au NWs in high yield (95%) by reducing HAuCl4 in the presence of 2 nm Au nanoparticles (NPs). These NWs catalyze CO2 reduction to CO in aqueous 0.5 M KHCO3 at an onset potential of 鈭?.2 V (vs reversible hydrogen electrode). At 鈭?.35 V, the reduction Faradaic efficiency (FE) reaches 94% (mass activity 1.84 A/g Au) and stays at this level for 6 h without any noticeable activity change. Density functional theory (DFT) calculations suggest that the excellent catalytic performance of these Au NWs is attributed both to their high mass density of reactive edge sites (鈮?6%) and to the weak CO binding on these sites. These ultrathin Au NWs are the most efficient nanocatalyst ever reported for electrochemical reduction of CO2 to CO.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700