用户名: 密码: 验证码:
Direct Observation of Lanthanide(III)-Phthalocyanine Molecules on Au(111) by Using Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy and Thin-Film Field-Effect Transistor Properties of
详细信息    查看全文
文摘
The crystal structures of double-decker single molecule magnets (SMM) LnPc2 (Ln = Tb(III) and Dy(III); Pc = phthalocyanine) and non-SMM YPc2 were determined by using X-ray diffraction analysis. The compounds are isomorphous to each other. The compounds have metal centers (M = Tb3+, Dy3+, and Y3+) sandwiched by two Pc ligands via eight isoindole-nitrogen atoms in a square-antiprism fashion. The twist angle between the two Pc ligands is 41.4°. Scanning tunneling microscopy was used to investigate the compounds adsorbed on a Au(111) surface, deposited by using the thermal evaporation in ultrahigh vacuum. Both MPc2 with eight lobes and MPc with four lobes, which has lost one Pc ligand, were observed. In the scanning tunneling spectroscopy images of TbPc molecules at 4.8 K, a Kondo peak with a Kondo temperature (TK) of 250 K was observed near the Fermi level (V = 0 V). On the other hand, DyPc, YPc, and MPc2 exhibited no Kondo peak. To understand the observed Kondo effect, the energy splitting of sublevels in a crystal field should be taken into consideration. As the next step in our studies on the SMM/Kondo effect in Tb-Pc derivatives, we investigated the electronic transport properties of Ln-Pc molecules as the active layer in top- and bottom-contact thin-film organic field effect transistor devices. Tb-Pc molecule devices exhibit p-type semiconducting properties with a hole mobility (μH) of 10−4 cm2 V−1 s−1. Interestingly, the Dy-Pc based devices exhibited ambipolar semiconducting properties with an electron mobility (μe) of 10−5 and a μH of 10−4 cm2 V−1 s−1. This behavior has important implications for the electronic structure of the molecules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700