用户名: 密码: 验证码:
Self-Assembly of Mesoscopic Materials To Form Controlled and Continuous Patterns by Thermo-Optically Manipulated Laser Induced Microbubbles
详细信息    查看全文
文摘
The formation of continuous patterns of nanostructured materials using directed self-assembly under external fields has generated considerable current research interest. We demonstrate for the first time such continuous patterning by inducing irreversible self-assembly leading to nucleation in mesocopic materials (inorganic, organic, and nanoparticles) using a tightly focused laser beam in an optical tweezers apparatus. A dense aqueous dispersion or solution of the material which has high absorption at the laser wavelength is taken in a sample holder so that some material is adsorbed on the top surface. A hot spot is created on the top surface when the adsorbed material absorbs the high intensity at the focus of the laser beam (a submicrometer sized spot), due to which a water vapor bubble is formed. This causes self-assembly of material around the bubble due to Gibbs鈥揗arangoni convection and capillary flow after which the material eventually nucleates into a crystalline state. The bubble is 鈥渢rapped鈥?at the hot spot due to the temperature gradient around it and can be manipulated by thermal forces generated optically, so that the system may be described as a 鈥渢hermo-optical鈥?tweezers. We translate the trapped bubble using the microscope sample holder stage of the apparatus so that the nucleation site of the material is simultaneously translated generating continuous patterns. We have demonstrated the technique using exotic inorganic materials such as soft oxometalates, an organic material such as glycine, and a fluorescent dye such as perylene as well as with carbon nanotubes. We have written patterns over lengths of nearly 1 mm at the rate of 1 Hz, with best resolution of about 4 渭m. The technique has potential for a wide range of applications ranging from solution processed printable electronics to controlled catalysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700