用户名: 密码: 验证码:
Electronic Structure and Normal Vibrations of CH3(OCH2CH2)nOCH3-M+-CF3SO3- (n
详细信息    查看全文
  • 作者:Trupta V. Kaulgud ; Nilesh R. Dhumal ; Shridhar P. Gejji
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2006
  • 出版时间:July 27, 2006
  • 年:2006
  • 卷:110
  • 期:29
  • 页码:9231 - 9239
  • 全文大小:533K
  • 年卷期:v.110,no.29(July 27, 2006)
  • ISSN:1520-5215
文摘
Electronic structure and the vibrational frequencies of CH3(OCH2CH2)nOCH3-M+-CF3SO3- (n = 2-4, M= Li, Na, and K) complexes have been derived from ab initio Hartree-Fock calculations. The metal ionshows varying coordination from 5 to 7 in these complexes. In tetraglyme-lithium triflate, Li+ binds to oneof the oxygens of CF3SO3- (triflate or Tf-) unlike for potassium or sodium ions, which possess bidentatecoordination. Structures of glyme-MTf complexes thus derived agree well with those determined from X-raydiffraction experiments. The metal ion binds more strongly to ether oxygens of tetraglyme than its di- ortriglyme analogues and engenders contraction of SO (for oxygens binding to metal ion) bonds with consequentfrequency upshift for the corresponding vibration in the complex relative to those in the free MTf ion pairs.Complexation of the diglyme with LiTf engenders the largest downshift (91 cm-1) for the SO2 stretchingvibration of the free anion, which suggests stronger binding of lithium to the diglyme than the tri- (79 cm-1)or tetraglyme (70 cm-1). A frequency shift in the opposite direction for the SO (where oxygens do not coordinateto the metal) and CF3 stretchings, which stems from the ion-polymer and anion-ion interactions, has beennoticed. These frequency shifts have been analyzed using natural bond orbital analysis and difference electrondensity maps coupled with molecular electron density topography.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700