用户名: 密码: 验证码:
Synthesis, Characterization, and Photophysics of Oxadiazole- and Diphenylaniline-Substituted Re(I) and Cu(I) Complexes
详细信息    查看全文
文摘
Transition-metal complexes of the types [Re(CO)3Cl(NN)], [Re(CO)3py(NN)]+, and [Cu(PPh3)2(NN)]+, where NN = 4,4鈥?bis(5-phenyl-1,3,4-oxadiazol-2-yl)-2,2鈥?bipyridine (OX) and 4,4鈥?bis(N,N-diphenyl-4-[ethen-1-yl]-aniline)-2,2鈥?bipyridine (DPA), have been synthesized and characterized. Crystal structures for [Re(CO)3Cl(DPA)] and [Cu(PPh3)2(OX)]BF4 are presented. The crystal structure of the rhenium complex shows a trans arrangement of the ethylene groups, in agreement with density functional theory calculations. The structure of the copper complex displays the planar aromatic nature of the bpy鈥搊xadiazole ligand. Density functional theory modeling of the complexes was supported by comparison of calculated and experimental normalized Raman spectra; the mean absolute deviations of the complexes were <10 cm鈥?. The Franck鈥揅ondon state was investigated using UV鈥搗is and resonance Raman spectroscopic as well as density functional theory computational techniques. It was shown that the lowest energy absorption peaks are metal to ligand charge transfer and ligand-centered charge transfer for the oxadiazole- and diphenylaniline-substituted bipyridine ligands, respectively. The lowest energy excited states were characterized using transient emission and absorption spectroscopic techniques in conjunction with density functional theory calculations. These showed that the DPA complexes had ligand-centered nonemissive 鈥渄ark鈥?states with lifetimes ranging from 300 to 2000 ns.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700