用户名: 密码: 验证码:
Methanol Steam Reforming over Indium-Promoted Pt/Al2O3 Catalyst: Nature of the Active Surface
详细信息    查看全文
文摘
The surface state of the Pt/In2O3/Al2O3 catalyst coated onto a microchannel stainless steel reactor was investigated under working conditions using synchrotron-based ambient pressure photoelectron (APPES) and X-ray absorption near-edge structure (XANES) spectroscopies, combined with online mass spectrometry. The surface of the fresh catalyst consists of metallic Pt, In2O3, and Al2O3. Reduction under 0.2 mbar of H2 at 250 掳C leads to surface enhancement of Pt and partial reduction of In2O3, while Al2O3 remains unchanged. Reoxidation in O2 atmosphere stimulates surface segregation of In2O3 over Pt, accompanied by partial oxidation of Pt to PtOx. Based on these results a dynamic, gas-phase-dependent surface state is demonstrated. Under methanol steam reforming conditions, the surface state rapidly adapts under the reaction stream regardless of the pretreatment. However, correlation of gas phase with spectroscopic results under working conditions pointed out the beneficial effect of surface indium to reduce the CO selectivity. Finally, evidence of a distorted symmetry of Al sites on Pt/In2O3/Al2O3 catalyst compared to that of 纬-Al2O3 is given. The findings obtained in the present study are of fundamental significance in understanding the relation between the surface state and the catalytic performance of a functional methanol reforming catalyst.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700