用户名: 密码: 验证码:
State-to-State Inelastic Scattering of O2 with Helium
详细信息    查看全文
文摘
Molecular oxygen (O2) is extremely important for a wide variety of processes on and outside Earth. Indeed, O2–He collisions are crucial to model O2 abundance in space or to create ultracold O2 molecules. A crossed molecular beam experiment to probe rotational excitation of O2 due to helium collisions at energies of 660 cm–1 is reported. Velocity map imaging was combined with state-selective detection of O2(X3Σg) by (2+1) resonance-enhanced multiphoton ionization. The obtained raw O2+ images were corrected from density to flux and the differential cross sections (DCS) were then extracted for six O2 final states. Exact quantum mechanical calculations were also performed. A very good agreement between experimental and theoretical DCSs was found by using an initial O2 beam population ratio of 80% for the first rotational state and 20% for the first excited state. The agreement demonstrates our ability to model inelastic processes between O2 molecules and rare gas both theoretically and experimentally.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700