用户名: 密码: 验证码:
Cooperative Binding of Acetaminophen and Caffeine within the P450 3A4 Active Site
详细信息    查看全文
文摘
Acetaminophen (N-acetyl-p-aminophenol, APAP) is a commonly used analgesic/antipyretic. When oxidized by P450, a toxic APAP metabolite is generated. Human P450 3A4 was expressed in Escherichia coli, purified, and reconstituted using artificial liposomes. Oxidation of APAP by P450 3A4, as detected by the formation of its glutathione adduct, was found to exhibit negative homotropic cooperativity with a Hill coefficient of 0.7. In the presence of caffeine, the observed kinetics were close to classical Michaelis–Menten kinetics with a Hill coefficient approaching 1. In order to probe for a potential repositioning of APAP within the P450 3A4 pocket in the presence of caffeine, NMR T1 paramagnetic relaxation techniques were used to calculate distances from the P450 3A4 heme iron to protons of APAP alone and in the presence of caffeine. Both APAP and caffeine were found to bind at the active site in proximity to the heme iron. When APAP was incubated with P450 3A4, the acetamido group of APAP was found to be closest to the heme iron consistent with the amide group of APAP weakly associating with the heme iron. The addition of caffeine disrupted the ability of APAP to coordinate with the heme iron of P450 3A4 and enhanced the rate of oxidation to its toxic metabolite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700