用户名: 密码: 验证码:
TAT Fusion Protein Transduction into Isolated Mitochondria Is Accelerated by Sodium Channel Inhibitors
详细信息    查看全文
文摘
Stringent control of ion and protein transport across the mitochondrial membranes is required to maintain mitochondrial function and biogenesis. In particular, the inner mitochondrial membrane is generally impermeable to proteins entering the matrix except via tightly regulated protein import mechanisms. Recently, cell penetrant peptides have been shown to move across the inner mitochondrial membrane in a manner suggesting an independent mechanism. HIV-1 transactivator of transcription (TAT) is an arginine-rich cell penetrant peptide, 47YGRKKRRQRRR57, which can transduce full-length proteins not only across the cell membrane but also into intracellular organelles. In this study, we investigated the ability of a TAT-containing protein to move into the mitochondrial matrix. Using a novel FACS assay for isolated, purified mitochondria, we show that TAT can deliver a modified fluorescent protein, mMDH-GFP, to the matrix of mitochondria and it is subsequently processed by the matrix peptidases. In addition, transduction of TAT-mMDH-GFP into mitochondria is independent of canonical protein import pathways as well as mitochondrial membrane potential. In direct contrast to published reports regarding the cell membrane where the sodium channel inhibitor, amiloride, blocks endocytosis and inhibits TAT transduction, TAT transduction into mitochondria is markedly increased by this same sodium channel inhibitor. These results confirm that the cell penetrant peptide, TAT, can readily transduce a protein cargo into the mitochondrial matrix. These results also demonstrate a novel role for mitochondrial sodium channels in mediating TAT transduction into mitochondria that is independent of endocytotic mechanisms. The mechanism of TAT transduction into mitochondria therefore is distinctly different from transduction across the cell membrane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700