用户名: 密码: 验证码:
Optimizing Time and Temperature of Enzymatic Conversion of Isoflavone Glucosides to Aglycones in Soy Germ Flour
详细信息    查看全文
文摘
Five factors (enzyme concentration, substrate concentration, pH, incubation temperature, and incubation time) were initially screened for the conversion of isoflavone glucosides to aglycones in soy germ flour. The incubation temperature/time most significantly affected aglycone yield; subsequently, a full 5 (35, 40, 45, 50, and 55 °C) × 6 (1, 2, 3, 4, 5, and 6 h) factorial design and response surface methodology were employed to attain an optimal incubation time/temperature condition. The optimum condition producing soy germ flour with a high concentration of daidzein, glycitein, and genistein was as follows: soy germ flour:deionized water (1:5, w/v), β-glucosidase at 1 unit/g of soy germ flour, pH 5, and incubation temperature/time of 45 °C/5 h. Under this optimal condition, most isoflavone glucosides were converted to aglycones with daidzein, glycitein, and genistein of ≥15.4, ≥6.16, and ≥4.147 μmol/g, respectively. In contrast, the control soy germ flour contained 13.82 μmol/g daidzin, 7.11 μmol/g glycitin, 4.40 μmol/g genistin, 1.56 μmol/g daidzein, 0.52 μmol/g glycitein, and 0.46 μmol/g genistein.

Keywords (keywords):

Soy germ flour; isoflavone aglycones; isoflavone glucosides; β-glucosidase; Plackett−Burman design; RSM

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700