用户名: 密码: 验证码:
Probing Molecular Interactions of Asphaltenes in Heptol Using a Surface Forces Apparatus: Implications on Stability of Water-in-Oil Emulsions
详细信息    查看全文
文摘
The behaviors and molecular interactions of asphaltenes are related to many challenging issues in oil production. In this study, the molecular interaction mechanism of asphaltenes in Heptol solvents of varying toluene/n-heptane ratio were directly measured using a surface forces apparatus (SFA). The results showed that the interactions between asphaltene surfaces gradually changed from pure repulsion to weak adhesion as the weight ratio of toluene (ω) in Heptol decreased from ω = 1 to 0. The measured repulsion was mainly due to the steric interactions between swelling asphaltene molecules and/aggregates. The micropipet technique was applied to test the stability of two water-in-oil emulsion droplets attached to glass pipettes. A computer-controlled 4-roll mill fluidic device was also built in-house to investigate the interaction of free-suspending water-in-oil emulsions under dynamic flow conditions. Both micropipet and 4-roll mill fluidic tests demonstrate that asphaltenes adsorbed at oil/water interfaces play a critical role in stabilizing the emulsion drops, in agreement with the repulsion measured between asphaltene surfaces in toluene using SFA, and that interfacial sliding or shearing is generally required to destabilize the protective interfacial apshaltene layers which facilitates the coalescence of emulsion drops. Our results provide insights into the fundamental understanding of molecular interaction mechanisms of asphaltenes in organic solvents and stabilization/destabilization behaviors of water-in-oil emulsions with asphaltenes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700