用户名: 密码: 验证码:
All Inorganic Frameworks of Tin Dioxide Shell as Cathode Material for Lithium Sulfur Batteries with Improved Cycle Performance
详细信息    查看全文
文摘
SnO2 shells with micromesopores are synthesized using the template sacrifice method from silica sphere templates. The pores and specific surface area are characterized with SEM, TEM, and BET absorptions. Sulfur is introduced into the SnO2 shells up to 66 wt % according to TGA results. Extra sulfur can only be located at the outer surface of SnO2, resulting in a drastically reduced specific surface area. Because of the unique structure, the S/SnO2 composites with 66 wt % sulfur content exhibit a high initial capacity of 1517 mA·h·g–1 at a current density of 0.2 C, and 1176 mA·h·g–1 at 0.5 C, and remaining capacity of 1176 and 736.6 mA·h·g–1 after 50 cycles, respectively. The performance is much better than that of pure sulfur or S/SnO2 at higher sulfur content. Better performance of S/SnO2 at 66 wt % is attributed to the micromesopores and the shell framework of SnO2, while the performance fading at higher sulfur content is owing to the coating of extra sulfur on the outer surface of SnO2 shells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700