用户名: 密码: 验证码:
Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers
详细信息    查看全文
  • 作者:Hao Liang ; Biwu Liu ; Qipeng Yuan ; Juewen Liu
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:June 22, 2016
  • 年:2016
  • 卷:8
  • 期:24
  • 页码:15615-15622
  • 全文大小:512K
  • 年卷期:0
  • ISSN:1944-8252
文摘
The introduction of functional molecules to the surface of magnetic iron oxide nanoparticles (NPs) is of critical importance. Most previously reported methods were focused on surface ligand attachment either by physisorption or covalent conjugation, resulting in limited ligand loading capacity. In this work, we report the seeded growth of a nucleotide coordinated polymer shell, which can be considered as a special form of adsorption by forming a complete shell. Among all of the tested metal ions, Fe3+ is the most efficient for this seeded growth. A diverse range of guest molecules, including small organic dyes, proteins, DNA, and gold NPs, can be encapsulated in the shell. All of these molecules were loaded at a much higher capacity compared to that on the naked iron oxide NP core, confirming the advantage of the coordination polymer (CP) shell. In addition, the CP shell provides better guest protein stability compared to that of simple physisorption while retaining guest activity as confirmed by the entrapped glucose oxidase assay. Use of this system as a peroxidase nanozyme and glucose biosensor was demonstrated, detecting glucose as low as 1.4 μM with excellent stability. This work describes a new way to functionalize inorganic materials with a biocompatible shell.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700