用户名: 密码: 验证码:
PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing
详细信息    查看全文
  • 作者:Ni Hui ; Xiaotian Sun ; Shuyan Niu ; Xiliang Luo
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2017
  • 出版时间:January 25, 2017
  • 年:2017
  • 卷:9
  • 期:3
  • 页码:2914-2923
  • 全文大小:571K
  • ISSN:1944-8252
文摘
Biofouling arising from nonspecific adsorption is a substantial outstanding challenge in diagnostics and disease monitoring, and antifouling sensing interfaces capable of reducing the nonspecific adsorption of proteins from biological complex samples are highly desirable. We present herein the preparation of novel composite nanofibers through the grafting of polyethylene glycol (PEG) polymer onto polyaniline (PANI) nanofibers and their application in the development of antifouling electrochemical biosensors. The PEGylated PANI (PANI/PEG) nanofibers possessed large surface area and remained conductive and at the same time demonstrated excellent antifouling performances in single protein solutions as well as complex human serum samples. Sensitive and low fouling electrochemical biosensors for the breast cancer susceptibility gene (BRCA1) can be easily fabricated through the attachment of DNA probes to the PANI/PEG nanofibers. The biosensor showed a very high sensitivity to target BRCA1 with a linear range from 0.01 pM to 1 nM and was also efficient enough to detect DNA mismatches with satisfactory selectivity. Moreover, the DNA biosensor based on the PEGylated PANI nanofibers supported the quantification of BRCA1 in complex human serum, indicating great potential of this novel biomaterial for application in biosensors and bioelectronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700