用户名: 密码: 验证码:
Evolution of Homopolymer Thin-Film Instability on Surface-Anchored Diblock Copolymers Varying in Composition
详细信息    查看全文
文摘
The stability of molecularly thin polymer films deposited on various material substrates is of critical importance to many contemporary nanotechnologies involving functional coatings and nano/micropatterned surfaces, in which case the causes responsible for film destabilization must be fully understood. Previous experimental studies report that factors such as film thickness and polymer molecular weight play significant roles in governing the rate, as well as mechanism, of destabilization. Complementary theoretical predictions reveal that surface heterogeneities can likewise induce (and regulate the process of) destabilization. In this study, we investigate the destabilization rate and mechanism of homopolystyrene (PS) films differing in thickness on top of poly(styrene-b-methyl methacrylate) (SM) diblock copolymer monolayers varying in chemical composition anchored to flat silica-like substrates to examine the effect of surface constitution on PS stability. Copolymers with a long M block consistently promote PS dewetting by nucleation and growth, wherein the linear dewetting rate decreases monotonically with increasing PS molecular weight, film thickness, and S fraction in the SM copolymer. In analogous studies involving a copolymer with a relatively short M block, however, PS dewetting proceeds instead by spinodal dewetting that evolves gradually into nucleation and growth as the film thickness is increased.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700