用户名: 密码: 验证码:
Cell Adhesion and Proliferation on the “Living” Surface of a Polyelectrolyte Multilayer
详细信息    查看全文
文摘
The adhesion of living eukaryotic cells to a substrate, one of the most complex problems in surface science, requires adsorption of extracellular proteins such as fibronectin. Thin films of polyelectrolyte complex made layer-by-layer (polyelectrolyte multilayers or PEMUs) offer a high degree of control of surface charge and composition—interconnected and essential variables for protein adhesion. Fibroblasts grown on multilayers of poly(styrenesulfonate), PSS, and poly(diallyldimethylammonium), PDADMA, with increasing thickness exhibit good adhesion until the 12th layer of polyelectrolyte has been added, whereupon there is a sudden transition to nonadhesive behavior. This sharp change is due to the migration of excess positive charge to the surface—a previously unrecognized property of PEMUs. Precise radiotracer assays of adsorbed 125I-albumin show how protein adsorption is related to multilayer surface charge. With more negative surface charge density from the sulfonates of PSS, more albumin adsorbs to the surface. However, a loosely held or “soft corona” exchanges with serum protein under the Vroman effect, which is correlated with poor cell adhesion. A comprehensive view of cell adhesion highlights the central role of robust protein adhesion, which is required before any secondary effects of matrix stiffness on cell fate can come into play.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700