用户名: 密码: 验证码:
Understanding the Biomedical Effects of the Self-Assembled Tetrahedral DNA Nanostructure on Living Cells
详细信息    查看全文
文摘
Recently, much attention has been paid to DNA again due to the successful synthesis of DNA-based nanostructures that can enter cells via endocytosis and thus have great potential in biomedical fields. However, the impacts of DNA nanostructures on life activities of a living cell are unknown. Herein, the promotion effect of tetrahedral DNA nanostructure (TDN) on cell growth and the underlying molecular mechanisms are reported. Upon exposure to TDN, cell proliferation is significantly enhanced, accompanied by up-regulation of cyclin-dependent kinase like-1 gene, changes in cell cycle distribution, and up-regulation of the Wnt/β-catenin signaling-related proteins (β-catenin, Lef 1 and cyclin D). In contrast, single-stranded DNA (ssDNA) shows no such functions. Furthermore, TDN is able to reverse the inhibition effect of DKK1, a specific inhibitor for Wnt/β-catenin pathway. Hence, the Wnt/β-catenin pathway is the target for TDN to promote cell proliferation. The findings allow TDN to be a novel functional nanomaterial that has great potential in tissue repair and regeneration medicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700