用户名: 密码: 验证码:
Linear and Nonlinear Optical Properties of Monolayer-Protected Gold Nanocluster Films
详细信息    查看全文
文摘
Gold nanoclusters have been extensively studied in solution for their unique optical properties. However, many applications of nanoclusters involve the use of the material in the solid state such as films. Au25(SR)18 in polymeric hosts was used as the model for studying the optical properties of nanocluster films. Different film-processing conditions as well as types of polymers were explored to produce a good-quality film that is suitable for optical measurements. The best optical film was made using Au25(C6S)18 and polystyrene. The formation of nanocluster films drastically reduces the intercluster distances to a few nanometers, which were estimated and characterized by optical absorption. The steady-state absorption and emission properties of the nanocluster film maintained their molecular characteristics. The emissions from the nanocluster films are found to be strongly enhanced at 730 nm with a smaller enhancement at 820 nm when the intercluster distance is below 8 nm. The emission enhancement can be attributed to the energy transfer between clusters due to the small intercluster distance. Two-photon Z scan revealed that the two-photon absorption cross sections are in the order of 106 GM, which is an order of magnitude higher than it is in solution. The two-photon absorption enhancement is correlated with strong dipole coupling. These results show that metal nanoclusters can be made into optical quality films, which increase the interaction between clusters and enhances their linear and nonlinear optical responses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700