用户名: 密码: 验证码:
Heteroanionic Materials Based on Copper Clusters, Bisphosphonates, and Polyoxometalates: Magnetic Properties and Comparative Electrocatalytic NOx Reduction Studies
详细信息    查看全文
文摘
Three compounds associating for the first time polyoxotungstates, bisphosphonates, and copper ions were structurally characterized. They consist in heteropolyanionic monodimensional materials where [Cu6(Ale)4(H2O)4]4– (Ale = alendronate = [O3PC(O)(C3H6NH3)PO3]4–) complexes alternate with polyoxometalate (POM) units. In Na12[{SiW9O34Cu3(Ale)(H2O)}{Cu6(Ale)4(H2O)4}]·50H2O (SiW9CuAle), the polyoxometalate core consists in a {SiW9Cu3} monomer capped by a pentacoordinated Ale ligand, while sandwich-type Keggin {(SbW9O33)2Cu3(H2O)2.5Cl0.5} and Dawson {(P2W15O56)2Cu4(H2O)2} complexes are found in Na8Li29[{(SbW9O33)2Cu3(H2O)2.5Cl0.5}2{Cu6(Ale)4(H2O)4}3]·163H2O (SbW9CuAle) and Na20[{(P2W15O56)2Cu4(H2O)2}{Cu6(Ale)4(H2O)4}]·50H2O (P2W15CuAle), respectively. A comparative magnetic study of the SiW9CuAle and SbW9CuAle compounds enabled full quantification of the CuII superexchange interactions both for the POM and non-POM subunits, evidencing that, while the paramagnetic centers are anti-ferromagnetically coupled in the polyoxometalate units, both anti-ferromagnetic and ferromagnetic interactions coexist in the {Cu6(Ale)4(H2O)4} cluster. All the studied compounds present a good efficiency upon the reduction of HNO2 or NO2, the POM acting as a catalyst. However, it has been found that SbW9CuAle is inactive toward the reduction of nitrates, highlighting that both the {(SbW9O33)2Cu3} unit and the {Cu6(Ale)4(H2O)4} cluster do not act as electrocatalysts for this reaction. In contrast, SiW9CuAle and P2W15CuAle have shown a significant activity upon the reduction of NO3 and thus both at pH 1 and pH 5, evidencing that the chemical nature of the polyoxometalate is a crucial parameter even if it acts as precatalyst. Moreover, comparison of the activities of P2W15CuAle and [(P2W15O56)2Cu4(H2O)2]16– evidenced that if the [Cu6(Ale)4(H2O)4]4– cluster does not act as electrocatalyst, it acts as a cofactor, significantly enhancing the catalytic efficiency of the active POM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700