用户名: 密码: 验证码:
Molecular Dynamics Simulations Elucidate Conformational Dynamics Responsible for the Cyclization Reaction in TEAS
详细信息    查看全文
  • 作者:Fan Zhang ; Nanhao Chen ; Ruibo Wu
  • 刊名:Journal of Chemical Information and Modeling
  • 出版年:2016
  • 出版时间:May 23, 2016
  • 年:2016
  • 卷:56
  • 期:5
  • 页码:877-885
  • 全文大小:694K
  • 年卷期:0
  • ISSN:1549-960X
文摘
The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a “U-shape” conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg2+-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700