用户名: 密码: 验证码:
Stackable, Covalently Fused Gels: Repair and Composite Formation
详细信息    查看全文
文摘
Combining modeling and experiment, we created multilayered gels where each layer was 鈥渟tacked鈥?on top of the other and covalently interconnected to form mechanically robust materials, which could integrate the properties of the individual layers. In this process, a solution of new initiator, monomer, and cross-linkers was introduced on top of the first gel, and these new components then underwent living (co)polymerization to form the subsequent layer. We simulated this process using dissipative particle dynamics (DPD) to isolate factors that affect the formation and binding of chemically identical gel as well as incompatible layers. Analysis indicates that the covalent bond formation between the different layers is primarily due to reactive chain-ends, rather than residual cross-linkers. In the complementary experiments, we synthesized multilayered gels using either free radical (FRP) or atom transfer radical polymerizations (ATRP) methods. Polymerization results demonstrated that chemically identical materials preserved their structural integrity independent of the polymerization method. For gels encompassing incompatible layers, the contribution of reactive chain-ends plays a particularly important role in the integrity of the material, as indicated by the more mechanically robust systems prepared by ATRP. These studies point to a new approach for combining chemically distinct components into one coherent, multifunctional material as well as an effective method for repairing severed gels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700