用户名: 密码: 验证码:
Chemical-Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops
详细信息    查看全文
  • 作者:Sung Real Son and Sang Done Kim
  • 刊名:Industrial & Engineering Chemistry Research
  • 出版年:2006
  • 出版时间:April 12, 2006
  • 年:2006
  • 卷:45
  • 期:8
  • 页码:2689 - 2696
  • 全文大小:432K
  • 年卷期:v.45,no.8(April 12, 2006)
  • ISSN:1520-5045
文摘
For the chemical-looping combustion (CLC), readily available metal oxides (NiO, Fe2O3) for oxygen carriersand bentonite, TiO2, and Al2O3 for the supports of the looping materials were selected. The reactivity of theoxygen carrier particles was determined in a thermobalance reactor under the reducing (CH4) and oxidizing(O2) conditions at 923-1223 K. The reactivity of NiO is higher than Fe2O3, and the particles supported onbentonite or Al2O3 produce higher reactivity than those on TiO2. The reactivity of the metal oxide particlesincreases with increasing temperature and the amount of NiO. The obtained kinetic data of the NiO-Fe2O3/bentonite can be analyzed based on the modified volumetric and shrinking core models for the reduction andoxidation conditions, respectively. The CLC experiment was carried out in an annular shape circulating fluidizedbed (CFB) reactor with double loops. To determine the optimum fuel gas velocity, the mixture of NiO andFe2O3 (75:25) on a bentonite support was tested at 1123 K. The CH4 conversion was higher at lower velocitiesthan that at higher ones, and the optimum CH4 gas velocity for complete combustion was found to be around2-3 umf (minimum fluidizing velocity). Combustion efficiency increases with increasing temperature, andthe optimum reaction temperature was found to be around 1123 K. It was found that CO emission from thefuel reactor was negligibly small, and no H2 emission was detected at the optimum conditions. From theoxidation reactor, NOx emission was also negligibly small, and CO2 emission was not detected.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700