用户名: 密码: 验证码:
Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells
详细信息    查看全文
文摘
Low-temperature-processed perovskite solar cells (PSCs), especially those fabricated on flexible substrates, exhibit device performance that is worse than that of high-temperature-processed PSCs. One of the main reasons for the inferior performance of low-temperature-processed PSCs is the loss of photogenerated electrons in the electron collection layer (ECL) or related interfaces, i.e., indium tin oxide/ECL and ECL/perovskite. Here, we report that tailoring of the energy level and electron transporting ability in oxide ECLs using Zn2SnO4 nanoparticles and quantum dots notably minimizes the loss of photogenerated electrons in the low-temperature-fabricated flexible PSC. The proposed ECL with methylammonium lead halide [MAPb(I0.9Br0.1)3] leads to fabrication of significantly improved flexible PSCs with steady-state power conversion efficiency of 16.0% under AM 1.5G illumination of 100 mW cm–2 intensity. These results provide an effective method for fabricating high-performance, low-temperature solution-processed flexible PSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700