用户名: 密码: 验证码:
Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles
详细信息    查看全文
文摘
The control of nanogaps lies at the heart of plasmonics for nanoassemblies. The plasmon coupling sensitively depends on the size and the shape of the nanogaps between nanoparticles, permitting fine-tuning of the resonance wavelength and near-field enhancement at the gap. Previously reported methods of molecular or lithographic control of the gap distance are limited to producing discrete values and encounter difficulty in achieving subnanometer gap distances. For these reasons, the study of the plasmon coupling for varying degrees of interaction remains a challenge. Here, we report that by using light, the interparticle distance for gold nanoparticle (AuNP) dimers can be continuously tuned from a few nanometers to negative values (i.e., merged particles). Accordingly, the plasmon coupling between the AuNPs transitions from the classical electromagnetic regime to the contact regime via the nonlocal and quantum regimes in the subnanometer gap region. We find that photooxidative desorption of alkanedithiol linkers induced by UV irradiation causes the two AuNPs in a dimer to approach each other and eventually merge. Light-driven control of the interparticle distance offers a novel means of exploring the fundamental nature of plasmon coupling as well as the possibility of fabricating nanoassemblies with any desired gap distance in a spatially controlled manner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700