用户名: 密码: 验证码:
Stability and Degradation Mechanisms of Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis
详细信息    查看全文
文摘
Radiation-grafted membranes are a promising alternative to commercial membranes for water electrolyzers, since they exhibit lower hydrogen crossover and area resistance, better mechanical properties, and are of potentially lower cost than perfluoroalkylsulfonic acid membranes, such as Nafion. Stability is an important factor in view of the expected lifetime of 40 000 h or more of an electrolyzer. In this study, combinations of styrene (St), α-methylstyrene (AMS), acrylonitrile (AN), and 1,3-diisopropenylbenzene (DiPB) are cografted into 50 μm preirradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) base film, followed by sulfonation to produce radiation-grafted membranes. The stability of the membranes with different monomer combinations is compared under an accelerated stress test (AST), and the degradation mechanisms are investigated. To mimic the conditions in an electrolyzer, in which the membrane is always in contact with liquid water at elevated temperature, the membranes are immersed in water for 5 days at 90 °C, so-called thermal stress test (TST). In addition to testing in air atmosphere tests are also carried out under argon to investigate the effect of the absence of oxygen. The water is analyzed with UV–vis spectroscopy and ion chromatography. The ion exchange capacity (IEC), swelling degree, and Fourier transform infrared (FTIR) spectra of the membranes are compared before and after the test. Furthermore, energy-dispersive X-ray (EDX) spectroscopic analysis of the membrane cross-section is performed. Finally, the influence of the TST to the membrane area resistance and hydrogen crossover is measured. The stability increases along the sequence St/AN, St/AN/DiPB, AMS/AN, and AMS/AN/DiPB grafted membrane. The degradation at the weak-link, oxygen-induced degradation, and hydrothermal degradation are proposed in addition to the “swelling-induced detachment” reported in the literature. By mitigating the possible paths of degradation, the AMS/AN/DiPB grafted membrane is shown to be the most stable membrane and, therefore, it is a promising candidate for a membrane to be used in a water electrolyzer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700