用户名: 密码: 验证码:
Reaction Mechanism Governing Formation of 1,3-Bis(diphenylphosphino)propane-Protected Gold Nanoclusters
详细信息    查看全文
文摘
This report outlines the determination of a reaction mechanism that can be manipulated to develop directed syntheses of gold monolayer-protected clusters (MPCs) prepared by reduction of solutions containing 1,3-bis(diphenylphosphino)propane (Lp>3p>) ligand and Au(PPh3)Cl. Nanocluster synthesis was initiated by reduction of two-coordinate phosphine-ligated [Aup>Ip>LL鈥瞉p>+p> complexes (L, L鈥?= PPh3, Lp>3p>), resulting in free radical complexes. The [Aup>0p>LL鈥瞉p>鈥?/sup> free radicals nucleated, forming a broad size distribution of ligated clusters. Timed UV鈥搗is spectroscopy and electrospray ionization mass spectrometry monitored the ligated Aux, 6 鈮?x 鈮?13, clusters, which comprise reaction intermediates and final products. By employing different solvents and reducing agents, reaction conditions were varied to highlight the largest portion of the reaction mechanism. We identified several solution-phase reaction classes, including dissolution of the gold precursor, reduction, continuous nucleation/core growth, ligand exchange, ion鈥搈olecule reactions, and etching of colloids and larger clusters. Simple theories can account for the reaction intermediates and final products. The initial distribution of the nucleation products contains mainly neutral clusters. However, the rate of reduction controls the amount of reaction overlap occurring in the system, allowing a clear distinction between reduction/nucleation and subsequent solution-phase processing. During solution-phase processing, the complexes undergo core etching and core growth reactions, including reactions that convert neutral clusters to cations, in a cyclic process that promotes formation of stable clusters of specific metal nuclearity. These processes comprise 鈥渟ize-selective鈥?processing that can narrow a broad distribution into specific nuclearities, enabling development of tunable syntheses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700