用户名: 密码: 验证码:
Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells
详细信息    查看全文
文摘
We report a new ternary Zn2SnO4 (ZSO) electron-transporting electrode of a CH3NH3PbI3 perovskite solar cell as an alternative to the conventional TiO2 electrode. The ZSO-based perovskite solar cells have been prepared following a conventional procedure known as a sequential (or two-step) process with ZSO compact/mesoscopic layers instead of the conventional TiO2 counterparts, and their solar cell properties have been investigated as a function of the thickness of either the ZSO compact layer or the ZSO mesoscopic layer. The presence of the ZSO compact layer has a negligible influence on the transmittance of the incident light regardless of its thickness, whereas the thickest compact layer blocks the back-electron transfer most efficiently. The open-circuit voltage and fill factor increase with the increasing thickness of the mesoscopic ZSO layer, whereas the short-circuit current density decreases with the increasing thickness except for the thinnest one (鈭?00 nm). As a result, the device with a 300 nm-thick mesoscopic ZSO layer shows the highest conversion efficiency of 7%. In addition, time-resolved and frequency-resolved measurements reveal that the ZSO-based perovskite solar cell exhibits faster electron transport (鈭?0 times) and superior charge-collection capability compared to the TiO2-based counterpart with similar thickness and conversion efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700