用户名: 密码: 验证码:
Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent
详细信息    查看全文
文摘
Although polycationic surfaces have high antimicrobial efficacies, they suffer from high toxicity to mammalian cells and severe surface accumulation of dead bacteria. For the first time, we propose a surface-initiated photoiniferter-mediated polymerization (SI-PIMP) strategy of constructing a “cleaning” zwitterionic outer layer on a polycationic bactericidal background layer to physically hinder the availability of polycationic moieties for mammalian cells in aqueous service. In dry conditions, the polycationic layer exerts the contact-active bactericidal property toward the adherent bacteria, as the zwitterionic layer collapses. In aqueous environment, the zwitterionic layer forms a hydration layer to significantly inhibit the attachment of planktonic bacteria and the accumulation of dead bacteria, while the polycationic layer kills bacteria occasionally deposited on the surface, thus preserving the antibacterial capability for a long period. More importantly, the zwitterionic hydrated layer protects the mammalian cells from toxicity induced by the bactericidal background layer, and therefore hierarchical antibacterial surfaces present much better biocompatibility than that of the naked cationic references. The dominant antibacterial mechanism of the hierarchical surfaces can switch from the bactericidal efficacy in dry storage to the bacteria repellent capability in aqueous service, showing great advantages in the infection-resistant applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700