用户名: 密码: 验证码:
Systematic Control of Hole-Injection Barrier Height with Electron Acceptors in [7]phenacene Single-Crystal Field-Effect Transistors
详细信息    查看全文
文摘
The interface between the single crystal and the Au source/drain electrodes in [7]phenacene single-crystal field-effect transistors (FETs) was modified using 14 electron acceptors with different redox potentials. The effective hole-injection barrier heights (heffs) for [7]phenacene single-crystal FETs have been plotted as a function of the redox potential (Eredox) of the inserted electron acceptors, showing that the heff decreases with increasing Eredox. The highest heff occurs without inserted material (electron acceptors), and this deviates from the otherwise linear relationship between heff and Eredox. We have investigated the temperature dependence of heff in an attempt to determine why the heff value without inserted material is so high, which suggests that no additional barrier, such as a tunneling barrier, is formed in the device. We conclude that the pure Schottky barrier in this FET is lowered very significantly by the insertion of an electron acceptor. The gate-voltage dependence of heff suggests a slight reduction of Schottky barrier height owing to hole accumulation. Furthermore, the clear correlation between threshold voltage and redox potential suggests a relationship between threshold voltage and heff. Controlling the interface between the single crystal and the source/drain electrodes in this FET produced a very high 渭 (6.9 cm2 V鈥? s鈥?) and low absolute threshold voltage, i.e., excellent FET characteristics. The topological characterization of inserted materials on [7]phenacene single crystals are achieved using atomic force microscope (AFM) and X-ray diffraction (XRD). The results show that the single crystals are not completely covered with the inserted materials and the inhomogeneous modification of inserted materials for single crystals effectively leads to the drastic change of hole-injection barrier between source/drain electrodes and single-crystal active layer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700