用户名: 密码: 验证码:
Chronic Myeloid Leukemia Drug Evaluation Using a Multisignal Amplified Photoelectrochemical Sensing Platform
详细信息    查看全文
文摘
Chronic myeloid leukemia (CML) is a malignant clone disease of hematopoietic stem cells. At present, the most effective therapy for CML is bone marrow transplantation, but this procedure is expensive, and it is often difficult to find appropriately matched bone marrow donors. As an alternative to marrow transplantation, a more effective anticancer drug should be developed to cure the disease; in addition, an effective system to evaluate the activity of the drug needs to be developed. Herein, we present a novel antileukemia drug evaluation method based on a multisignal amplified photoelectrochemical sensing platform that monitors the activity of caspase-3, a known marker of cell apoptosis. Manganese-doped CdS@ZnS core鈥搒hell nanoparticles (Mn:CdS@ZnS) were synthesized via a simple wet chemical method, which provided a stable photocurrent signal. A DEVD鈥揵iotin peptide and streptavidin-labeled alkaline phosphatise (SA-ALP) were immobilized successively at these nanoparticles through amide bonding and through specific interaction between biotin and streptavidin, respectively. The photocurrent of this sensing platform improved as the ALP hydrolyzed the substrate 2-phospho-l-ascorbic acid (AAP) to ascorbic acid (AA), a more efficient electron donor. The activity of caspase-3 was detected using this sensing platform, and thus, the efficacy of nilotinib for targeting K562 CML cells could be evaluated. The results indicate that nilotinib can effectively induce apoptosis of the K562 cells. This sensing platform exhibited sensitive, reproductive, and stable performance in studying the nilotinib-induced apoptosis of K562 CML cells, and the platform could be utilized to evaluate other anticancer drugs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700