用户名: 密码: 验证码:
Structure-Based Design of Novel Benzoxazinorifamycins with Potent Binding Affinity to Wild-Type and Rifampin-Resistant Mutant Mycobacterium tuberculosis RNA Polymerases
详细信息    查看全文
文摘
By utilization of three-dimensional structure information of rifamycins bound to RNA polymerase (RNAP) and the human pregnane X receptor (hPXR), representative examples (2b鈥?b>d) of a novel subclass of benzoxazinorifamycins have been synthesized. Relative to rifalazil (2a), these analogues generally display superior affinity toward wild-type and Rif-resistant mutants of the Mycobacterium tuberculosis RNAP but lowered antitubercular activity in cell culture under both aerobic and anaerobic conditions. Lowered affinity toward hPXR for some of the analogues is also observed, suggesting a potential for reduced Cyp450 induction activity. Mouse and human microsomal studies of analogue 2b show it to have excellent metabolic stability. Mouse pharmacokinetics in plasma and lung show accumulation of 2b but with a half-life suggesting nonoptimal pharmacokinetics. These studies demonstrate proof of principle for this subclass of rifamycins and support further expansion of structure鈥揳ctivity relationships (SARs) toward uncovering analogues with development potential.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700