用户名: 密码: 验证码:
Microbially Mediated Mineral Carbonation: Roles of Phototrophy and Heterotrophy
详细信息    查看全文
文摘
Ultramafic mine tailings from the Diavik Diamond Mine, Canada and the Mount Keith Nickel Mine, Western Australia are valuable feedstocks for sequestering CO2 via mineral carbonation. In microcosm experiments, tailings were leached using various dilute acids to produce subsaline solutions at circumneutral pH that were inoculated with a phototrophic consortium that is able to induce carbonate precipitation. Geochemical modeling of the experimental solutions indicates that up to 2.5% and 16.7% of the annual emissions for Diavik and Mount Keith mines, respectively, could be sequestered as carbonate minerals and phototrophic biomass. CO2 sequestration rates are mainly limited by cation availability and the uptake of CO2. Abundant carbonate mineral precipitation occurred when heterotrophic oxidation of acetate acted as an alternative pathway for CO2 delivery. These experiments highlight the importance of heterotrophy in producing sufficient DIC concentrations while phototrophy causes alkalinization of waters and produces biomass (fatty acids = 7.6 wt.%), a potential feedstock for biofuel production. Tailings storage facilities could be redesigned to promote CO2 sequestration by directing leachate waters from tailings piles into specially designed ponds where carbonate precipitation would be mediated by both chemical and biological processes, thereby storing carbon in stable carbonate minerals and potentially valuable biomass.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700